Clause typing, verb movement, and non-canonical matrix word orders∗

Julia Bacskai-Atkari
University of Potsdam
julia.bacskai-atkari@uni-potsdam.de

Lund-Potsdam-Budapest Linguistics Colloquium
Lund, 15-16 June 2017

1 Introduction

CP-layer of the clause:

• responsible for clause typing – clausal Type in Cheng (1991) and Force in Chomsky (1995), Rizzi (1997: 283) – relating clause to a superordinate clause or to the discourse (see Rizzi 1997)

• responsible for encoding finiteness – Rizzi (1997: 283–285), following e.g. Holmberg & Platzack (1988); finiteness distinct from tense (↔ Den Besten 1983), CP rather encodes whether there is tense at all (e.g. English that co-occurring with tensed verbs, for co-occurring with infinitives, see Chomsky & Lasnik 1977) – relating CP to its complement domain

• CPs can be iterated – minimal CP (Bacskai-Atkari 2015, Sobin 2002), as opposed to cartographic template of Rizzi (1997)

complementisers encoding clause type and finiteness in embedded clauses:

(1) a. I know that Mary has arrived.
 b. I don’t know if Mary has arrived.

complementiser if in (1b): typing the clause as interrogative [Q] and finite; restricted to subordinate/dependent clauses

∗This research was funded by the German Research Fund (DFG), as part of my project “The syntax of functional left peripheries and its relation to information structure”. The participation of the conference is supported by a travel grant from the Faculty of Humanities of the University of Potsdam.
structure:

\[\begin{array}{c}
\text{(2)} \\
\text{CP} \\
\text{C'} \\
\text{C}_{[\text{fin},[Q]} \ldots \\
\text{if}_{[\text{fin},[Q]}
\end{array} \]

rejected alternative (cartographic) analysis (cf. Bacskaï-Atkari 2016b):

\[\begin{array}{c}
\text{(3)} \\
\text{*CP} \\
\text{C'} \\
\text{C}_{[Q]} \text{CP} \\
\text{if}_{[Q]} \text{C'} \\
\text{C}_{[\text{fin}] \ldots } \\
\text{∅}_{[\text{fin}]}
\end{array} \]

proposed approach: minimal CP, general avoidance of empty projections

but: absence of overt complementiser in embedded and matrix clauses attested

\[\begin{array}{c}
\text{(4)} \\
\text{a. I know _ Mary has arrived.} \\
\text{b. I know who _ has arrived.} \\
\text{c. I don't know whether _ Mary has arrived.} \\
\text{d. _ Mary has arrived.} \\
\text{e. Has Mary arrived?} \\
\text{f. When did Mary arrive?}
\end{array} \]

absence of overt element in C or verb movement

verb movement in German V2 (canonical):

\[\begin{array}{c}
\text{(5)} \\
\text{a. Ralf hat gestern eine Torte gebacken.} \\
\text{Ralph has yesterday a.F.ACC cake baked.PTCP} \\
\text{‘Ralph baked a cake yesterday.’}
\end{array} \]

\[\begin{array}{c}
\text{b. Gestern hat Ralf eine Torte gebacken.} \\
\text{yesterday has Ralph a.F.ACC cake baked.PTCP} \\
\text{‘Ralph baked a cake yesterday.’}
\end{array} \]

pattern attested more generally across Germanic (English: historically)
questions:

- what are the conditions licensing an empty C head
- why verb movement takes place and how it is related to other ways of lexicalising the C head
- whether and to what extent movement/insertion to [Spec,CP] is related to the lexicalisation of the C head

proposal:

- regular West Germanic pattern: [fin] on C has to be lexicalised by an overt element (interface condition) – complementiser or verb movement
- zero complementiser: has to be licensed, cross-linguistic variation in its interpretability
- movement/insertion to [Spec,CP]: due to clause-typing features such as [wh] or [Q], insertion of anaphor or to [edge] feature, but: no overtness requirement
- filling of [Spec,CP] and C essentially independent → V1 and V3 matrix word orders possible

2 Embedded clauses

variation in the overtness of that in English:

(6)
 a. Peter says that she likes books.
 b. Peter says she likes books.
 c. That she likes books is surprising.
 d. *She likes books is surprising.

zero subordinator has to be licensed by a preceding matrix predicate

German:

(7)
 a. Peter sagt, dass sie Bücher mag.
 Peter says that she books likes.
 ‘Peter says that she likes books.’

 b. *Peter sagt, sie Bücher mag.
 Peter says she books likes
 ‘Peter says that she likes books.’

 c. Peter sagt, sie mag Bücher.
 Peter says she likes books
 ‘Peter says that she likes books.’

insertion of dass alternates with verb movement (V2 clause)
differences among verbs: “bridging verbs” allowing V2, not others (see Featherston 2004 for a detailed analysis of the distinction):

(8) a. Peter bezweifelt, dass sie Bücher mag.
 ‘Peter doubts that she likes books.’

b. *Peter bezweifelt, sie mag Bücher.
 ‘Peter doubts that she likes books.’

→ matrix predicate imposes selectional restrictions on its complement, including the particular functional head

structure for overt complementiser (English and German):

(9) CP
 \[\rightarrow \]
 C’
 \[\rightarrow \]
 C[f_fin][f_sub] ... \[\rightarrow \]
 dass[f_fin][f_sub]

[sub]: shorthand for subordination, indicates that the clause is a complement clause and has to be licensed by a matrix predicate

zero complementiser in English:

(10) CP
 \[\rightarrow \]
 C’
 \[\rightarrow \]
 C[f_fin][f_sub] ... \[\rightarrow \]
 φ[f_fin][f_sub]

only difference from (9): zero complementiser needs the matrix predicate as an antecedent

German: no zero declarative complementiser in the lexicon

→ first step: insertion of feature bundle with the category C without parallel insertion of a lexical element – this comes with an [edge] feature which ensures that a phrase is projected since [edge] requires the specifier to be filled; lexicalising [fin] on C: head adjunction (verb movement)
structure:

(11)

```
( CP
  DP
    sie C[fin,edge] ...
     V C[fin,edge]
     mag
  C')
```

Fanselow (2009): movement to [Spec,CP]: due to an [edge] feature – no direct relation between movement to [Spec,CP] and verb movement to C

standard analysis of V2 (see e.g. Den Besten 1989, Fanselow 2002; 2004a;b; 2009, Frey 2005): XP in [Spec,CP] and the verb to C (adjoining to C via head adjunction), XP not restricted to subject DPs

selectional restrictions imposed by the matrix verb: whether the [edge] feature is allowed on the C head – distinction between proper complement clauses (canonical subordination) versus other dependent clauses

variation between complementiser and verb movement in other clause types:

(12) a. Peter schreit, **als wäre** er beim Zahnarzt.
 Peter shouts as **be.COND.3SG he at.the dentist**
 ‘Peter is shouting as if he were at the dentist’s.’

b. Peter schreit, **als ob er beim Zahnarzt wäre.**
 Peter shouts as if **he at.the dentist be.COND.3SG**
 ‘Peter is shouting as if he were at the dentist’s.’

c. Plan an escape route, **if** fire should break out.

d. Plan an escape route, **should** fire break out.

embedded polar questions with an overt complementiser:

(13) a. I wonder **if** Mary is coming.

b. Ich frage **mich, ob** Maria kommt.
 I ask.1SG me.ACC if Mary comes
 ‘I wonder if Mary is coming.’
structure:

(14)
\[
\begin{array}{c}
\text{CP} \\
\text{C'} \\
\text{C[fin],[sub],[Q]} \\
\end{array}
\]

embedded \textit{wh}-questions (also: polar questions with \textit{whether}):

(15)
a. I wonder \textbf{which book} (\% \textbf{that}) Mary likes.

b. Ich frage mich, \textbf{welches Buch} (\% \textbf{dass}) Maria mag.
 I ask.1SG me.ACC which.N book \textit{that} Mary likes.
 ‘I wonder which book Mary likes.’

standard varieties: no complementiser inserted ↔ certain dialects (see e.g. Weiß 2013, Bayer & Brandner 2008 for German)

Bacskaï-Atkari (2016a): substandard dialects showing Doubly Filled COMP effects regular in lexicalising [fin] on C by an overt element

structures:

(16)
a. \[
\begin{array}{c}
\text{CP} \\
\text{which book[wh]} \\
\text{C'} \\
\text{C[fin],[wh],[sub]} \\
\text{θ[fin],[sub]} \\
\end{array}
\]

b. \[
\begin{array}{c}
\text{CP} \\
\text{which book[wh]} \\
\text{C'} \\
\text{C[fin],[wh],[sub]} \\
\text{that[fin],[sub]} \\
\end{array}
\]

difference between the dialects: lexical difference (\textit{that} vs. \textit{zero}) but not in terms of the syntactic features: [\textit{wh}] feature present on the \textit{C} head

zero subordinator not exceptional in English (see declaratives) but [\textit{fin}] regularly lexicalised by an overt element in interrogatives (Bacskaï-Atkari 2016a)

German: licensing of the zero subordinator restricted to embedded constituent questions
(Standard pattern)

Doubly Filled COMP dialects in German: regular insertion of the finite subordinator \textit{dass}

question: why no verb movement – selectional restrictions by matrix element (no [\textit{edge}] feature)
3 Main clauses and V2

canonical order in German main clauses: V2

(17) a. Ralf hat gestern eine Torte gebacken.
 Ralph has yesterday a.F.ACC cake baked.PTCP
 ‘Ralph baked a cake yesterday.’

 b. Gestern hat Ralf eine Torte gebacken.
 yesterday has Ralph a.F.ACC cake baked.PTCP
 ‘Ralph baked a cake yesterday.’

structure:

(18)

 CP
 /
 /
 DP C'
 / /
Ralf C_[fin,][edge] . . .
 / /
gestern V C_[fin,][edge]
 / /
 hat

filling of [Spec,CP]: result of [edge] feature (Fanselow 2009)

verb movement to C: more general requirement on lexicalising [fin] on C overtly, not possible to insert a zero complementiser (no licensor from a matrix clause)

English different: no V2 – zero declarative complementiser does not have to be licensed by a matrix element → no [edge] feature, no need to lexicalise [fin] on C by an overt element

matrix constituent questions: wh-element in [Spec,CP] and verb in C

(19) a. Who did you invite?

 b. Wen hast du eingeladen?
 who.ACC have.2SG you invited.PTCP
 ‘Who did you invite?’
verb movement even in English – zero complementiser either declarative or mere subordinator, not available in main clause interrogatives; remnant of earlier V2 pattern, English regularly lexicalising [fin] overtly in interrogatives

4 Non-canonical matrix word orders

surface V1 clauses in German – question: underlyingly V1 (no element in the [Spec,CP] position) or underlyingly V2

claim here: zero elements in V1 main clauses not unmotivated (↔ Zwart 2005)

matrix polar questions:

(21) **Hast du Peter gesehen?**
 have.2sg you Peter seen
 ‘Have you seen Peter?’

first position: polar operator corresponding to *whether* (Larson 1985) – inserted directly into the [Spec,CP] position (Bianchi & Cruschina 2016); covert operator inserted if the complementiser is overt (e.g. *if*, German *ob*), cf. Zimmermann (2013: 86)

note: polar operator not entirely specific to interrogative contexts – disjunctive operators (but not *wh*-type polar operators, e.g. *whether*) in conditionals, similarly to morphophonologically identical complementisers between the two clause types (cf. Bhatt & Pancheva 2006, Arsenijević 2009, Danckaert & Haegeman 2012)
overt operator *whether* in English: restricted to embedded interrogatives in Late Modern English but attested in main clauses in earlier periods (often with verb movement of the lexical verb or T-to-C movement of *do*):

(22) a.

\[\text{Hwæðer wæs iohannes fulluht þe of heofonum þe of mannunm} \]

whether was John’s baptism that of heavens or of man

‘Was the baptism of John done by heaven or by man?’ (West Saxon Gospel) (Van Gelderen 2009: 141, ex. 15)

b. And the Lord seide to Cæym, Where is Abel thi brother? The which answeryde, I wote neuer; *whether am* I the keper of my brother?

(Wycliffe Bible older version, Genesis 4.9)\(^1\)

c. *Whether did* he open the Basket?

(The Tryal of Thomas Earl of Macclesfield)

(source: Salmon, Thomas and Sollom Emlyn (1730) A complete collection of state-trials, and proceedings for high-treason, and other crimes and misdemeanours: 1715–1725)

operator in polar interrogatives semantically motivated

structure:

(23)

\[
\begin{array}{c}
\text{CP} \\
\text{Op}_{p-[Q]} \quad \text{C'} \\
\text{C}_{[\text{fin}], [Q], [\text{edge}]} \quad \ldots \\
\text{V} \quad \text{C}_{[\text{fin}], [Q]} \\
\text{have} \\
\text{hast}
\end{array}
\]

no matrix complementiser to be inserted – but [edge] feature possible since no restrictions from a matrix predicate; [Q] more specific than [edge], [edge] satisfied by covert operator in [Spec,CP]

V1 conditionals:

(24) Ist die Entscheidung gefallen, *gilt* sie für alle.

is the.F decision fallen applies she for all

‘Once the decision has been taken, it applies to all.’

\(^{1}\)The example is taken from the Michigan Corpus of Middle English Prose and Verse.
anaphoric elements possible:

(25) Ist die Entscheidung gefallen, dann / so gilt sie für alle.

is the.F decision fallen then so applies she for all
‘Once the decision has been taken, it applies to all.’

structure: as in (23)

both the zero anaphor and dann / so need an antecedent – order of the clauses cannot be changed (no matter whether the subclause is introduced by wenn or not):

(26) a. */∅/So,Dann gilt die Entscheidung für alle, ist sie gefallen.

∅/so/then applies the.F decision for all is she fallen
‘The decision applies to all once it has been taken.’

b. */∅/So,Dann gilt die Entscheidung für alle, wenn sie gefallen ist.

∅/so/then applies the.F decision for all when she fallen is
‘The decision applies to all once it has been taken.’

zero anaphor semantically and syntactically motivated

V1 declaratives:

(27) A: Peter ist gekommen.

Peter is come.PTCP
‘Peter has arrived.’

B: Hab ich (schon) gesehen.

have.1sg I already seen
‘I have (already) seen it.’

zero anaphor (corresponds to a demonstrative) in the [Spec,CP] – structure like (23)

clause in (27) cannot be uttered without an appropriate antecedent – not possible out of the blue:

(28) *Hab ich (schon) gesehen, dass Peter gekommen ist.

have.1sg I already seen that Peter come.PTCP is
‘I have (already) seen that Peter has arrived.’

V1 clauses examined here: underlyingly V2 – no overtness requirement on the element in the specifier (even if anaphors move via [edge] feature and not a clause-typing feature), no surface V2 requirement – restrictions on the specifier and lexicalising [n] on C not tied together

(29) Morgen ich geh Arbeitsamt.

tomorrow I go job.centre
‘Tomorrow I will go to the job centre’.
multiple CPs – second CP generated with [edge] feature since there is no complementiser, no [fin] to be lexicalised since [fin] checked off in the first CP already

5 Conclusion

elements in C and their role in clause typing

- overt complementisers – canonical configuration, availability subject to licensing conditions (cases examined here: restricted to embedded/dependent clauses); [fin] lexicalised by an overt element regularly; no [edge] feature

- zero complementisers – cross-linguistic variation, available lexical items in certain languages (embedded and/or main clauses)

- verb movement – head adjunction, no complementiser in C – [fin] lexicalised by the verb adjoined to C; [edge] feature present to project the phrase, element in [Spec,CP] either overt (surface V2) or not (surface V1)

References

